Modeling the effect of delay strategy on transmission dynamics of HIV/AIDS disease

Adv Differ Equ. 2020;2020(1):663. doi: 10.1186/s13662-020-03116-8. Epub 2020 Nov 25.

Abstract

In this manuscript, we investigate a nonlinear delayed model to study the dynamics of human-immunodeficiency-virus in the population. For analysis, we find the equilibria of a susceptible-infectious-immune system with a delay term. The well-established tools such as the Routh-Hurwitz criterion, Volterra-Lyapunov function, and Lasalle invariance principle are presented to investigate the stability of the model. The reproduction number and sensitivity of parameters are investigated. If the delay tactics are decreased, then the disease is endemic. On the other hand, if the delay tactics are increased then the disease is controlled in the population. The effect of the delay tactics with subpopulations is investigated. More precisely, all parameters are dependent on delay terms. In the end, to give the strength to a theoretical analysis of the model, a computer simulation is presented.

Keywords: Computer results; Delay model; HIV/AIDS disease; Reproduction number; Stability analysis.