The role of climate change and vegetation greening on the variation of terrestrial evapotranspiration in northwest China's Qilian Mountains

Sci Total Environ. 2021 Mar 10:759:143532. doi: 10.1016/j.scitotenv.2020.143532. Epub 2020 Nov 16.

Abstract

Terrestrial evapotranspiration (ETa) reflects the complex interactions of climate, vegetation, soil and terrain and is a critical component in water and energy cycles. However, the manner in which climate change and vegetation greening influence ETa remains poorly understood, especially in alpine regions. Drawing on the Global Land Evaporation Amsterdam Model (GLEAM) ETa data, the interannual variability of ETa and its ties to precipitation (P), potential evaporation (ETp) and vegetation (NDVI) were analysed. The Budyko framework was implemented over the period of 1982 to 2015 to quantify the response of ETa to climate change's direct (P and ETp) and indirect (NDVI) impacts. The ETa, P, ETp and NDVI all showed significant increasing trends from 1981 to 2015 with rates of 1.52 mm yr-1, 3.18 mm yr-1, 0.89 mm yr-1 and 4.0 × 10-4 yr-1, respectively. At the regional level, the positive contribution of increases in P and NDVI offset the negative contribution of ETp to the change in ETa (∆ETa). The positive ∆ETa between 1982 and 2001 was strongly linked with the concomitant increase in NDVI. Increases in vegetation contributing to a positive ∆ETa differed among landscape types: for shrub, meadow and steppe they occurred during both periods, for alpine vegetation between 1982 and 2001, and for desert between 2002 and 2015. Climate change directly contributed to a rise in ETa, with P as the dominant factor affecting forested lands during both periods, and alpine vegetation between 2002 and 2015. Moreover, ETp was a dominant factor for the desert between 1982 and 2001, where the variation of P was not significant. The contributions of factors having an impact on ∆ETa are modulated by both the sensitivity of impact factors acting on ETa as well as the magnitudes of factor changes. The greening of vegetation can influence ETa by increasing vegetation transpiration and rainfall interception in forest, brush and meadow landscapes. These findings can help in developing a better understanding of the interaction of ecosystems and hydrology in alpine regions.

Keywords: Budyko hypothesis; Climate change; Qilian Mountains; Terrestrial evapotranspiration; Vegetation greening.

MeSH terms

  • China
  • Climate Change*
  • Ecosystem*
  • Water

Substances

  • Water