Antibacterial activity of Zn-loaded Cuban zeolite against Helicobacter pylori in comparison to its Na-loaded and unmodified counterparts

Environ Geochem Health. 2021 May;43(5):2037-2048. doi: 10.1007/s10653-020-00781-2. Epub 2020 Nov 26.

Abstract

Helicobacter pylori can be found in the stomach of about half of the humans, and a large population can be associated with serious diseases. To survive in the stomach H. pylori increases the pH locally by producing ammonia which binds to H+ becoming ammonium. This work investigated the effects on the in-vitro growth of H. pylori of a natural cation-exchanger mainly composed (≈70%) of clinoptilolite and mordenite. The zeolitized material from Cuba was evaluated in its original form (M), as well as in its Na- (M-Na) and Zn-exchanged (M-Zn) counterparts. In the preliminary agar cup diffusion test, H. pylori revealed susceptibility only to M-Zn, with a direct relationship between concentration and width of inhibition halo. Further experiments evidenced that bacterium replication increases when ammonium is supplied to the growth medium and decreases when zeolites subtract NH4+ via ion exchange. Due to the multi-cationic population of its zeolites M was not effective enough in removing ammonium and, in the Minimum Inhibitory Concentration (MIC) test, allowed bacterial growth even at a concentration of 50 mg/mL. Inhibition was achieved with M-Na because it contained sodium zeolites capable of maximizing NH4+ subtraction, although the MIC was high (30 mg/mL). M-Zn evidenced a more effective inhibitory capacity, with a MIC of 4 mg/mL. Zinc has antimicrobial properties and H. pylori growth was affected by Zn2+ released from clinoptilolite and mordenite. These zeolites, being more selective towards NH4+ than Zn2+, can also subtract ammonium to the bacterium, thus enhancing the efficacy of M-Zn.

Keywords: Ammonium; Cation exchange; Clinoptilolite; Helicobacter pylori; Mordenite; Zinc.

Publication types

  • Comparative Study

MeSH terms

  • Aluminum Silicates / chemistry
  • Aluminum Silicates / pharmacology*
  • Ammonium Compounds / metabolism
  • Ammonium Compounds / pharmacology
  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology*
  • Cuba
  • Helicobacter pylori / drug effects*
  • Helicobacter pylori / growth & development
  • Ion Exchange
  • Microbial Sensitivity Tests
  • Sodium / chemistry
  • Zeolites / chemistry
  • Zeolites / pharmacology*
  • Zinc / chemistry
  • Zinc / pharmacology*

Substances

  • Aluminum Silicates
  • Ammonium Compounds
  • Anti-Bacterial Agents
  • clinoptilolite
  • mordenite
  • Zeolites
  • Sodium
  • Zinc