Glucosamine Modified the Surface of pH-Responsive Poly(2-(diethylamino)ethyl Methacrylate) Brushes Grafted on Hollow Mesoporous Silica Nanoparticles as Smart Nanocarrier

Polymers (Basel). 2020 Nov 20;12(11):2749. doi: 10.3390/polym12112749.

Abstract

This work presents the synthesis of pH-responsive poly(2-(diethylamino) ethyl methacrylate) (PDEAEMA) brushes anchored on hollow mesoporous silica nanoparticles (HMSN-PDEAEMA) via a surface-initiated ARGET ATRP technique. The average size of HMSNs was ca. 340 nm, with a 90 nm mesoporous silica shell. The dry thickness of grafted PDEAEMA brushes was estimated to be ca 30 nm, as estimated by SEM and TEM. The halogen group on the surface of PDEAMA brushes was successfully derivatized with glucosamine, as confirmed by XPS. The effect of pH on the size of the hybrid nanoparticles was investigated by DLS. The size of fabricated nanoparticle decreased from ca. 950 nm in acidic media to ca. 500 nm in basic media due to the deprotonation of tertiary amine in the PDEAEMA. The PDEAEMA modified HMSNs nanocarrier was efficiently loaded with doxorubicin (DOX) with a loading capacity of ca. 64%. DOX was released in a relatively controlled pH-triggered manner from hybrid nanoparticles. The cytotoxicity studies demonstrated that DOX@HMSN-PDEAEMA-Glucosamine showed a strong ability to kill breast cancer cells (MCF-7 and MCF-7/ADR) at low drug concentrations, in comparison to free DOX.

Keywords: anticancer drug; drug delivery nanosystem; hollow mesoporous silica nanoparticles; pH-Responsive polymer brushes; surface modification.