Biomolecule from Trigonella stellata from Saudi Flora to Suppress Osteoporosis via Osteostromal Regulations

Plants (Basel). 2020 Nov 20;9(11):1610. doi: 10.3390/plants9111610.

Abstract

Trigonella stellata has used in folk medicine as palatable and nutraceutical herb. It also regulates hypocholesterolemia, hypoglycemia, and has showed anti-inflammatory activities as well as antioxidants efficacy. Osteoporosis is a one of bone metabolic disorders and is continuously increasing worldwide. In the present study, caffeic acid was isolated from Trigonella stellata and identified using 1 D- and 2 D-NMR spectroscopic data. Caffeic acid was investigated on osteoblast and osteoclast in vitro using mice bone marrow-derived mesenchymal cells. Caffeic acid played reciprocal proliferation between osteoblast and osteoclast cells and accelerated the bone mineralization. It was confirmed by cytotoxicity, alkaline phosphatase (ALP), alizarin red S (ARS), and Tartrate resistant acid phosphatase (TRAP) assay. Caffeic acid regulated the osteogenic marker and upregulated the osteopontin, osteocalcin, and bone morphogenic proteins (BMP). Quantitative real time PCR and Western blot were used to quantify the mRNA and protein markers. It also regulated the matrix metalloprotease-2 (MMP-2) and cathepsin-K proteolytic markers in osteoclast cells. In addition, caffeic acid inhibited bone resorption in osteoclast cells. On the other hand, it upregulate osteoblast differentiation through stimulation of extracellular calcium concentrations osteoblast differentiation, respectively. The results also were confirmed through in silico docking of caffeic acid against cathepsin-B and cathepsin-K markers. These findings revealed that caffeic acid has a potential role in bone-metabolic disorder through its multifaceted effects on osteoblast and osteoclast regulations and controls osteoporosis.

Keywords: BMP; Trigonella stellata; caffeic acid; osteoblast; osteoclast; osteoporosis.