Preconditioning improves muscle regeneration after ischemia-reperfusion injury

J Orthop Res. 2021 Sep;39(9):1889-1897. doi: 10.1002/jor.24909. Epub 2020 Nov 24.

Abstract

Ischemia-reperfusion injury (IRI) is a critical condition associated with serious clinical manifestations. Extensive research has focused on the strategies increasing organ tolerance to IRI. Preconditioning (PC) has been shown to provide protection to various organs toward IRI. However, the underlying mechanisms remain unknown. This study aimed to evaluate the role of PC on muscle regeneration after IRI and the potential underlying mechanisms. Three-month-old male UCP-1 reporter mice underwent unilateral hindlimb IRI with or without PC, the tissue viability and injury index were measured at 24 h after IRI. Hindlimb gait, muscle contractility, muscle histology were analyzed at 2 weeks after IRI. In another group of animals, β3 adrenergic receptor (β3AR) agonist amibegron and β3AR antagonist SR-59230A were administrated before PC/IRI, the hindlimb function and muscle regeneration were evaluated at 2 weeks after IRI. Our results showed that PC has little effect on improving the tissue viability at the acute phase of IRI, but it showed a long-term beneficial role of improving hindlimb function and muscle regeneration as evidenced by increased central nuclei regenerating myofibers. The effects of PC are related to inducing muscle fibro-adipogenic progenitor (FAP) brown/beige-like adipocyte (BAT) differentiation. Amibegron treatment displayed a similar role of PC while SR-59230A abolished the effect of PC. This study suggests PC has a beneficial role in promoting muscle regeneration after IRI through β3AR signaling pathway-stimulated FAP-BAT differentiation.

Keywords: ischemia-reperfusion injury; muscle regeneration; preconditioning; β3 adrenergic receptor.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Hindlimb
  • Male
  • Mice
  • Muscles
  • Regeneration
  • Reperfusion Injury* / prevention & control
  • Signal Transduction