First Report of Cladosporium Blossom Blight Caused by Cladosporium cladosporioides on Calliandra haematocephala in China

Plant Dis. 2020 Nov 24. doi: 10.1094/PDIS-07-20-1504-PDN. Online ahead of print.

Abstract

Calliandra haematocephala Hassk., commonly called red powder puff, is widely cultivated as an ornamental plant in Taiwan, Hainan, Guangdong and Fujian in China (CAS, 1988). The flowers are dark crimson with conspicuous stamens, which give them the appearance of powder-puffs. Blossom blight on C. haematocephala was first observed in early January 2019 on plants grown on the university campus as well as in parks in Fuzhou city, with nearly 80% of flowers on individual plants infected. At various locations in the city, disease incidence was 100%. Symptoms appeared as grayish green fungal growth on the stamens with the entire flower eventually turning black and covered with masses of fungal spores. Fifteen single spore isolates obtained from nine necrotic stamen samples were purified and cultured on Potato dextrose agar (PDA) plates at 24 ℃.The resultant fungal colonies were olivaceous-green to olivaceous-brown and had a velvet-like appearance. Conidiophores were smooth-walled, solitary, non-nodulose, and measuring 40 to 340 × 3 to 4 µm (n=50). Ramoconidia were cylindrical-oblong or slightly curved with 0 to 3 septa, and measuring 10 to 25 × 3 to 4 µm (n=50). Conidia were smooth-walled and prolifically produced in long chains. Terminal conidia were aseptate, subglobose, ovoid to limoniform, measuring 3 to 6 × 2 to 2.5 µm (n=50). Intercalary conidia were elliptical to limoniform or subcylindrical, aseptate, measuring 5 to 12 × 2.5 to 3 µm (n=50). On the basis of its morphology, the causal organism was identified as Cladosporium cladosporioides (Bensch et al. 2010). For molecular identification, pure cultures of five single-spore isolates were used for DNA extraction. A fragment in the ITS regions of the fungal rDNA, the ACT and the TEF1-α, was amplified using the primers ITS1/ITS4, ACT-512F/ACT-783R, and EF1728 F/EF1-986R. The DNA sequences obtained from all five isolates were identical. The resulting ITS (MK720012) and ACT (MN013164), and TEFl-α (MK752020) sequences from a representative isolate MRCIM19 were 98-100% identical to the C. cladosporioides accessions (ITS: MH863979, MG228421; ACT: HM148509, JF499878, HM148532; TEFl-α: JF499872). To test pathogenicity, a spore suspension (1×105 conidia/mL) was prepared from a seven- day- old culture of isolate MRCIM19 and 10 mL of the suspension was sprayed onto six flowers on each of three C. haematocephala plants. Sterile distilled water was sprayed onto three flowers of two plants as control. The inoculated flowers were covered with plastic bags which were removed two days post inoculation. Disease symptoms were recorded on each flower at 10 days post inoculation. Based on the morpho-molecular characters, the re-isolated fungus from the inoculated flowers was C. cladosporioides. This fungus was previously reported to cause blossom blight in strawberry in the USA and Korea (Gubler et al. 1999; Nam et al. 2015). Although it has been reported from many plants (Zhang 2003) in China, this is the first report of C. cladosporioides on C. haematocephala worldwide. References Bensch, K. et al. 2010. Stud Mycol. 67:1-94. Chinese Academy of Sciences (CAS), 1988. Flora Republicae Popularis Sinicae Editorial Committee, Beijing Sci. Press., 39: 38. Gubler, W. D. et al. 1999. Plant Dis. 83:400. Nam, M. H. et al. 2015. Microbiol. 43: 354-359. Zhang Z., Ed. 2003. Flora fungorum sinicorum, Vol. 14. Cladosporium, Fusicladium, Pyricularia. Beijing Science Press. 297.

Keywords: Calliandra haematocephala; Cladosporium Blossom Blight; Cladosporium cladosporioides; Ramoconidia.