Highly efficient capture of uranium from seawater by layered double hydroxide composite with benzamidoxime

Sci Total Environ. 2021 Mar 10:759:143483. doi: 10.1016/j.scitotenv.2020.143483. Epub 2020 Nov 10.

Abstract

Through swelling/restoration reaction, benzamidoxime (BAO) is introduced into MgAl-LDH interlayers to assemble a new composite of MgAl-BAO-LDH (abbr. BAO-LDH). Wet samples of the BAO-LDH obtained by washing with diverse solvents are present in colloidal state, which facilitates the fabrication of thin film adsorbents convenient for actual application. After drying, the assembled sample exhibits floral morphology composed of thin nanosheets, much different from hexagonal morphology of NO3- intercalated MgAl-LDH precursor (NO3-LDH), demonstrating a phenomenon rarely found in swelling/restoration. The BAO-LDH depicts an extremely large maximum sorption capacity (qmU) of 327 mg·g-1 and ultra-high selectivity for U. At low U concentrations (5-10 ppm), nearly complete capture (~100%) is achieved in a wide pH range of 3-11, while at high U concentrations (110 ppm), quite high U removals (≥93.0%) are obtained at pH = 6-8, meaning perfect suitability for trapping U from seawater. For natural seawater containing trace amounts of U (3.93 ppb) coexisting with high concentration of competitive ions, the BAO-LDH displays significantly high U removal (87%). Complexation between interlayer BAO (N and O as ligands) with UO22+ and synergistic interactions of LDH layer hydroxyls with UO22+ contribute to the highly effective uranium capture. All results demonstrate the BAO-LDH is a promising adsorbent applied in seawater uranium extraction and nuclear wastewater disposal.

Keywords: Adsorption; Benzamidoxime; LDH composite; Seawater; U(VI) extraction.