A Network of Phosphate Starvation and Immune-Related Signaling and Metabolic Pathways Controls the Interaction between Arabidopsis thaliana and the Beneficial Fungus Colletotrichum tofieldiae

Mol Plant Microbe Interact. 2021 May;34(5):560-570. doi: 10.1094/MPMI-08-20-0233-R. Epub 2021 Feb 15.

Abstract

The beneficial root-colonizing fungus Colletotrichum tofieldiae mediates plant growth promotion (PGP) upon phosphate (Pi) starvation in Arabidopsis thaliana. This activity is dependent on the Trp metabolism of the host, including indole glucosinolate (IG) hydrolysis. Here, we show that C. tofieldiae resolves several Pi starvation-induced molecular processes in the host, one of which is the downregulation of auxin signaling in germ-free plants, which is restored in the presence of the fungus. Using CRISPR/Cas9 genome editing, we generated an Arabidopsis triple mutant lacking three homologous nitrilases (NIT1 to NIT3) that are thought to link IG-hydrolysis products with auxin biosynthesis. Retained C. tofieldiae-induced PGP in nit1/2/3 mutant plants demonstrated that this metabolic connection is dispensable for the beneficial activity of the fungus. This suggests that either there is an alternative metabolic link between IG-hydrolysis products and auxin biosynthesis, or C. tofieldiae restores auxin signaling independently of IG metabolism. We show that C. tofieldiae, similar to pathogenic microorganisms, triggers Arabidopsis immune pathways that rely on IG metabolism as well as salicylic acid and ethylene signaling. Analysis of IG-deficient myb mutants revealed that these metabolites are, indeed, important for control of in planta C. tofieldiae growth: however, enhanced C. tofieldiae biomass does not necessarily negatively correlate with PGP. We show that Pi deficiency enables more efficient colonization of Arabidopsis by C. tofieldiae, possibly due to the MYC2-mediated repression of ethylene signaling and changes in the constitutive IG composition in roots.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.

Keywords: auxin; beneficial fungi; endophytes; fungus–plant interactions; indole glucosinolates; phosphate availability; plant growth promotion; secondary metabolism.

MeSH terms

  • Arabidopsis Proteins* / genetics
  • Arabidopsis Proteins* / metabolism
  • Arabidopsis* / genetics
  • Arabidopsis* / metabolism
  • Colletotrichum* / metabolism
  • Gene Expression Regulation, Plant
  • Indoleacetic Acids
  • Metabolic Networks and Pathways
  • Phosphates
  • Plant Roots / metabolism

Substances

  • Arabidopsis Proteins
  • Indoleacetic Acids
  • Phosphates

Supplementary concepts

  • Colletotrichum tofieldiae