Effect of Stereochemistry on Chirality and Gelation Properties of Supramolecular Self-Assemblies

Chemistry. 2021 Feb 10;27(9):3119-3129. doi: 10.1002/chem.202004533. Epub 2021 Jan 15.

Abstract

Although chiral nanostructures have been fabricated at various structural levels, the transfer and amplification of chirality from molecules to supramolecular self-assemblies are still puzzling, especially for heterochiral molecules. Herein, four series of C2 -symmetrical dipeptide-based derivatives bearing various amino acid sequences and different chiralities are designed and synthesized. The transcription and amplification of molecular chirality to supramolecular assemblies are achieved. The results show that supramolecular chirality is only determined by the amino acid adjacent to the benzene core, irrespective of the absolute configuration of the C-terminal amino acid. In addition, molecular chirality also has a significant influence on the gelation behavior. For the diphenylalanine-based gelators, the homochiral gelators can be gelled through a conventional heating-cooling process, whereas heterochiral gelators form translucent stable gels under sonication. The racemic gels possess higher mechanical properties than those of the pure enantiomers. All of these results contribute to an increasing knowledge over control of the generation of specific chiral supramolecular structures and the development of new optimized strategies to achieve functional supramolecular organogels through heterochiral and racemic systems.

Keywords: chiral nanostructures; dipeptides; molecular chirality; self-assembly; supramolecular organogels.