Changes in the Functional and Structural Default Mode Network across the Adult Lifespan Based on Partial Least Squares

IEEE Access. 2019:7:82256-82265. doi: 10.1109/ACCESS.2019.2923274. Epub 2019 Jun 17.

Abstract

The default mode network (DMN) has been extensively investigated in the literature. However, previous studies have mainly focused on age-related changes in the DMN between old and young participants. Age-dependent changes in specific regions within the DMN have not been adequately explored across the entire adult lifespan. Thus, in the present study, we performed a seed partial least squares (PLS) analysis to investigate lifespan-wide changes in the regions of the functional and structural DMNs using resting-state functional magnetic resonance imaging (fMRI) and structural magnetic resonance imaging (MRI) data from healthy subjects aged 16-85 years. The posterior cingulate area was selected as the seed region based on prior fMRI studies. The single-group functional connectivity analysis showed a stable connection between the seed and the posterior cingulate cortex (PCC), middle temporal gyrus (MTG) and inferior temporal gyrus (ITG); a decreased connection between the seed and the medial prefrontal cortex (MPFC), anterior cingulate cortex (ACC) and superior frontal gyrus (SFG); and an increased connection between the seed and the precuneus (PreC), inferior parietal lobule (IPL) and middle frontal gyrus (MFG) across the entire lifespan. In contrast, in the single-group structural covariance analysis, the covariance connections of the seed to the DMN regions demonstrated a stable covariance trend to the PCC, MTG, superior temporal gyrus (STG) and ITG; an inverted U-shaped covariance trend to the MPFC, ACC, SFG, MFG and inferior frontal gyrus (IFG); and a U-shaped covariance trend to the PreC with age. Full-group analyses found significant linear decreases in functional and structural DMN integrity. Our findings provide crucial information regarding the influence of age on the function and structure of the DMN and may contribute to the understanding of the underlying mechanism of age-related changes in the DMN over the lifespan.

Keywords: Default mode network; Functional connectivity; Partial least squares; Structural covariance.