Swapping Exchange and Spin-Orbit Coupling in 2D van der Waals Heterostructures

Phys Rev Lett. 2020 Nov 6;125(19):196402. doi: 10.1103/PhysRevLett.125.196402.

Abstract

The concept of swapping the two most important spin interactions-exchange and spin-orbit coupling-is proposed based on two-dimensional multilayer van der Waals heterostructures. Specifically, we show by performing realistic ab initio simulations, that a single device consisting of a bilayer graphene sandwiched by a 2D ferromagnet Cr_{2}Ge_{2}Te_{6} (CGT) and a monolayer WS_{2}, is able not only to generate, but also to swap the two interactions. The highly efficient swapping is enabled by the interplay of gate-dependent layer polarization in bilayer graphene and short-range spin-orbit and exchange proximity effects affecting only the layers in contact with the sandwiching materials. We call these structures ex-so-tic, for supplying either exchange (ex) or spin-orbit (so) coupling in a single device, by gating. Such bifunctional devices demonstrate the potential of van der Waals spintronics engineering using 2D crystal multilayers.