Bideposited silver nanocolloid arrays with strong plasmon-induced birefringence for SERS application

Sci Rep. 2020 Nov 19;10(1):20143. doi: 10.1038/s41598-020-77149-0.

Abstract

Silver nano-rod, nano-zigzag, nano-saw, and nano-particle arrays are fabricated with glancing angle bideposition. The structure-dependent anisotropic optical properties of those bideposited nanostructured arrays are measured and investigated. The equivalent birefringence values of nano-rod and nano-zigzag arrays are much larger than crystals found in nature and liquid crystal used in display products. The fact that induced localized plasmon-magnetic field between nanorods dominates the strong phase retardation between p-polarized and s-polarized transmitted wave. For the nano-saw, the strong localized electric field induced between the saw teeth leads to strong SERS signals. Although the bideposited nanoparticles own weak morphological anisotropy, strong optical phase retardation is still detected at wavelengths near 400 nm.