Plackett Burman design for microplastics quantification in marine sediments

Mar Pollut Bull. 2021 Jan:162:111841. doi: 10.1016/j.marpolbul.2020.111841. Epub 2020 Nov 16.

Abstract

Microplastics are gaining worldwide attention due to their omnipresence. The marine environment is one of the most affected systems; especially the sediment compartment. Microplastic separation from the sediment matrix is the first step to evaluate its abundance and availability. Nevertheless, a lack of consistency in extraction protocols is a fact. This paper describes the optimization of the microplastic extraction procedure from marine sediments. The Plackett-Burman saturated factorial design was used to identify the significant factors and to select optimum working conditions. With this purpose, the following variables were studied: the number of extractions; the amount of sediment; the settling time; the density separation solution volume; the agitation time and the suitability of using wet or freeze-dried sediment. The Plackett-Burman design has revealed that the most statistically significant variables were sediment mass and agitation time. The optimized method was applied for two marine sediments collected in the Mar Menor Lagoon.

Keywords: Factorial design; Marine sediments; Microplastic; Optimization; Plackett-Burman.

MeSH terms

  • Environmental Monitoring
  • Geologic Sediments
  • Microplastics*
  • Plastics
  • Water Pollutants, Chemical* / analysis

Substances

  • Microplastics
  • Plastics
  • Water Pollutants, Chemical