Mineral Composition and Its Control on Nanopores of Marine-Continental Transitional Shale from the Ningwu Basin, North China

J Nanosci Nanotechnol. 2021 Jan 1;21(1):168-180. doi: 10.1166/jnn.2021.18750.

Abstract

There is a large difference between the sedimentary environment and maturity of organic matter between marine shale and marine-continental transitional shale. It is of great significance to discuss the effect of inorganicminerals on the pores for marine-continental transitional shale gas exploration. In this study, scanning electron microscopy (SEM), low temperature liquid nitrogen adsorption and Xray diffraction (XRD) were conducted on eight marine-continental transitional shale samples from the Ningwu Basin, Shanxi Province, China. The pore structure differences in the different minerals were discussed, and the relationship between the mineral content and pore parameters was analysed. The results show that the mineral composition of shale is dominated by clay minerals, quartz, carbonate minerals and a small amount of pyrite. The clay minerals content is between 39.5% and 77.0%, with an average of 59.9%. The quartz content ranges from 21.8% to 47.8%, with an average of 31.9%. The carbonate minerals content in shale is between 0.6% and 23.9%, and the average is 6.3%. The clay minerals are composed of mixed illite-montmorillonite layer, kaolinite and chlorite. The content of mixed illite-montmorillonite layer is between 13.8% and 27.4%, with an average of 20.4%. The kaolinite content ranges from 57.0% to 86.2%, with an average of 76.0%. The content of chlorite is between 0 and 15.6%, with an average of 5.7%. The types of pores are mainly intergranular pores and interlaminar pores, which are mostly presented as slit and parallel plates. The mixed illite-montmorillonite layer contributes more to the specific surface area, which is favourable for shale gas adsorption. The pores in kaolinite are more developed than those of the mixed illite-montmorillonite layer, but the pore diameter is relatively large. The quartz granule has a complete crystal type, and intergranular pores with a large pore size are often developed at the mineral contacts. Compared with clay minerals and quartz, the pore development in the carbonate minerals is relatively poor and develops more micro-fractures. The pyrite contributes a certain number of intergranular pores and mold pores.

Publication types

  • Research Support, Non-U.S. Gov't