Helical locomotion in a porous medium

Phys Rev E. 2020 Oct;102(4-1):043111. doi: 10.1103/PhysRevE.102.043111.

Abstract

Microorganisms and artificial microswimmers often need to swim through environments that are more complex than purely viscous liquids in their natural habitats or operational environments, such as gel-like mucus, wet soil, and aquifers. The question of how the properties of these complex environments affect locomotion has attracted considerable recent attention. In this paper, we present a theoretical model to examine how the additional resistance due to the network of stationary obstacles in a porous medium affects helical locomotion. Here, we focus on helical locomotion for its ubiquity as a propulsion mechanism adopted by many swimming bacteria and artificial microswimmers. We show that the additional resistance can have qualitatively different effects on various scenarios of helical locomotion: (1) a helical propeller driven by an external torque, (2) a free swimming bacterium consisting of a helical flagellum and a head, and (3) a cargo-carrying helical propeller driven by an external torque. Our results elucidate the subtle and significant differences between torqued helical propulsion versus force-free and torque-free swimming in a porous medium. We also remark on the limitations as well as potential connections of our results with experimental measurements of bacterial swimming speeds in polymeric solutions.