Unveiling of the mechanisms of acoustic streaming induced by sharp edges

Phys Rev E. 2020 Oct;102(4-1):043110. doi: 10.1103/PhysRevE.102.043110.

Abstract

Acoustic waves can generate steady streaming within a fluid owing to the generation of viscous boundary layers near walls of typical thickness δ. In microchannels, the acoustic wavelength λ is adjusted to twice the channel width w to ensure a resonance condition, which implies the use of MHz transducers. Recently, though, intense acoustic streaming was generated by acoustic waves of a few kHz (hence with λ≫w), owing to the presence of sharp-tipped structures of curvature radius at the tip r_{c} smaller than δ. The present study quantitatively investigates this sharp-edge acoustic streaming via the direct resolution of the full Navier-Stokes equation using the finite element method. The influence of δ,r_{c}, and viscosity ν on the acoustic streaming performance is quantified. Our results suggest choices of operating conditions and geometrical parameters, in particular the dimensionless tip radius of curvature r_{c}/δ and the liquid viscosity.