Hybrid chitosan/gelatin/nanohydroxyapatite scaffolds promote odontogenic differentiation of dental pulp stem cells and in vitro biomineralization

Dent Mater. 2021 Jan;37(1):e23-e36. doi: 10.1016/j.dental.2020.09.021. Epub 2020 Nov 15.

Abstract

Objective: Hybrid chitosan/gelatin/nanohydroxyapatite (CS/Gel/nHA) scaffolds have attracted considerable interest in tissue engineering (TE) of mineralized tissues. The present study aimed to investigate the potential of CS/Gel/nHA scaffolds loaded with dental pulp stem cells (DPSCs) to induce odontogenic differentiation and in vitro biomineralization.

Methods: CS/Gel/nHA scaffolds were synthesized by freeze-drying, seeded with DPSCs, and characterized with flow cytometry. Scanning Electron Microscopy (SEM), live/dead staining, and MTT assays were used to evaluate cell morphology and viability; real-time PCR for odontogenesis-related gene expression analysis; SEM-EDS (Energy Dispersive X-ray spectroscopy), and X-ray Diffraction analysis (XRD) for structural and chemical characterization of the mineralized constructs, respectively.

Results: CS/Gel/nHA scaffolds supported viability and proliferation of DPSCs over 14 days in culture. Gene expression patterns indicated pronounced odontogenic shift of DPSCs, evidenced by upregulation of DSPP, BMP-2, ALP, and the transcription factors RunX2 and Osterix. SEM-EDS showed the production of a nanocrystalline mineralized matrix inside the cell-based and - to a lesser extent - the cell-free constructs, with a time-dependent production of net-like nanocrystals (appr. 25-30nm in diameter). XRD analysis gave the crystallite size (D=50nm) but could not distinguish between the initially incorporated and the biologically produced nHA.

Significance: This is the first study validating the potential of CS/Gel/nHA scaffolds to support viability and proliferation of DPSCs, and to provide a biomimetic microenvironment favoring odontogenic differentiation and in vitro biomineralization without the addition of any inductive factors, including dexamethasone and/or growth/morphogenetic factors. These results reveal a promising strategy towards TE of mineralized dental tissues.

Keywords: Chitosan; Dentin; Electron microscopy; Gelatin; Hydroxyapatite; Scaffolds; Stem cells; Tissue engineering.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biomineralization
  • Cell Differentiation
  • Cell Proliferation
  • Cells, Cultured
  • Chitosan*
  • Dental Pulp
  • Gelatin*
  • Odontogenesis
  • Stem Cells
  • Tissue Scaffolds

Substances

  • Gelatin
  • Chitosan