Bacterial Microbiota-derived Extracellular Vesicles in Children With Allergic Airway Diseases: Compositional and Functional Features

Allergy Asthma Immunol Res. 2021 Jan;13(1):56-74. doi: 10.4168/aair.2021.13.1.56.

Abstract

Purpose: Bacterial extracellular vesicles (EVs) play crucial roles in bacteria-host interactions. Due to their cargo, EVs are considered fingerprints of the parent cell, which are detectable in body fluids. We studied the composition and function of bacterial microbiota-derived EVs genes in urine to evaluate whether they have specific characteristics concerning allergic airway disease.

Methods: Subjects were from elementary school surveys and classified into 3 groups according to questionnaires and sensitization to aeroallergens: the allergic airway group (AA, n = 16), atopic controls (AC, n = 7) and healthy controls (HC, n = 26). The bacterial EVs were isolated from voided urine samples, their nucleic acid was extracted for 16S ribosomal RNA pyrosequencing and then characterized using α-diversity, β-diversity, network analysis, intergroup comparison of bacterial composition and predicted functions, and correlation with total immunoglobulin E (IgE), eosinophils% and fractional exhaled NO.

Results: The compositional α-diversity was the highest in AA, while functional α-diversity was the highest in HC. AA had a distinct clustering with the least intersample variation. Klebsiella, Haemophilus, members from Lachnospiraceae and Ruminococcaceae, and the pathways of sphingolipid and glycerolipid metabolism, and biosynthesis of peptidoglycan and lysine were the highest in AA and positively correlated with total IgE or eosinophil%. Genetic information processing function contributed to 48% of the intergroup variance and was the highest in AA. Diaphorobacter, Acinetobacter, and the pathways of short-chain fatty acids and anti-oxidants metabolism, lysine and xenobiotic degradation, and lipopolysaccharide biosynthesis were the lowest in AA and negatively correlated with total IgE or eosinophil%. The bacterial composition and function in AC were closer to those in HC. The bacterial network was remarkably dense in HC.

Conclusions: The bacterial microbiota-derived EVs in urine possess characteristic features in allergic airway disease with a remarkable correlation with total IgE and eosinophil%. These findings suggest that they may play important roles in allergic airway diseases.

Keywords: Microbiota; allergic rhinitis; asthma; bacteria; child; extracellular vesicles; hypersensitivity; metabolic networks and pathways; urine.