Current Trends in In Vitro Modeling to Mimic Cellular Crosstalk in Periodontal Tissue

Adv Healthc Mater. 2021 Jan;10(1):e2001269. doi: 10.1002/adhm.202001269. Epub 2020 Nov 16.

Abstract

Clinical evidence indicates that in physiological and therapeutic conditions a continuous remodeling of the tooth root cementum and the periodontal apparatus is required to maintain tissue strength, to prevent damage, and to secure teeth anchorage. Within the tooth's surrounding tissues, tooth root cementum and the periodontal ligament are the key regulators of a functional tissue homeostasis. While the root cementum anchors the periodontal fibers to the tooth root, the periodontal ligament itself is the key regulator of tissue resorption, the remodeling process, and mechanical signal transduction. Thus, a balanced crosstalk of both tissues is mandatory for maintaining the homeostasis of this complex system. However, the mechanobiological mechanisms that shape the remodeling process and the interaction between the tissues are largely unknown. In recent years, numerous 2D and 3D in vitro models have sought to mimic the physiological and pathophysiological conditions of periodontal tissue. They have been proposed to unravel the underlying nature of the cell-cell and the cell-extracellular matrix interactions. The present review provides an overview of recent in vitro models and relevant biomaterials used to enhance the understanding of periodontal crosstalk and aims to provide a scientific basis for advanced regenerative strategies.

Keywords: 3D in vitro models; bioprinting; cellular crosstalk; hydrogels; periodontal ligaments.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Extracellular Matrix
  • Periodontal Ligament
  • Periodontium*
  • Tooth Root
  • Tooth*