Effect of temperature on the coupling transport of water and ions through a carbon nanotube in an electric field

J Chem Phys. 2020 Nov 14;153(18):184503. doi: 10.1063/5.0028077.

Abstract

Temperature governs the motion of molecules at the nanoscale and thus should play an essential role in determining the transport of water and ions through a nanochannel, which is still poorly understood. This work devotes to revealing the temperature effect on the coupling transport of water and ions through a carbon nanotube by molecular dynamics simulations. A fascinating finding is that the ion flux order changes from cation > anion to anion > cation with the increase in field strength, leading to the same direction change of water flux. The competition between ion hydration strength and mobility should be a partial reason for this ion flux order transition. High temperatures significantly promote the transport of water and ions, stabilize the water flux direction, and enhance the critical field strength. The ion translocation time exhibits an excellent Arrhenius relation with the temperature and a power law relation with the field strength, yielding to the Langevin dynamics. However, because of self-diffusion, the water translocation time displays different behaviors without following the ions. The high temperature also leads to an abnormal maximum behavior of the ion flux, deciphered by the massive increase in water flow that inversely hinders the ion flux, suggesting the coexistence of water-ion coupling transport and competition. Our results shed deep light on the temperature dependence of coupling transport of water and ions, answering a fundamental question on the water flux direction during the ionic transport, and thus should have great implications in the design of high flux nanofluidic devices.