Preparation and Characterisation of Poly(methyl metacrylate)-Titanium Dioxide Nanocomposites for Denture Bases

Polymers (Basel). 2020 Nov 11;12(11):2655. doi: 10.3390/polym12112655.

Abstract

Introduction of titanium dioxide nanoparticles (TiO2 NPs) to poly(methyl methacrylate) (PMMA) aims to improve the mechanical, microbiological and tribological properties of dental prosthesis bases. The aim of the research was to assess the polymerisation time and the change in the colour of the new biomaterial. Samples with the 1 wt% and 2 wt% content of TiO2 additionally modified by ultrasounds were created. The effectiveness of ultrasounds was assessed by comparing the average size of conglomerates in a liquid acrylic resin monomer by means of a dynamic light scattering (DLS) analysis. The biomaterial structure was assessed by the energy-dispersive X-ray spectroscopy (EDS) analysis. The colour change was analysed by means of a colorimetric test and provided in the CIE (Commission internationale de l'éclairage) L*a*b* and RGB (Red Green Blue) colour palette. It was observed during the DLS test that the ultrasonic homogenisation process caused an increase in the suspension heterogeneity. The EDS analysis confirmed the presence of nanoparticles sized below 100 nm, which constitutes a ground for calling the new biomaterial a nanocomposite. The addition of TiO2 NPs as well as the ultrasounds result in the reduction of the average PMMA polymerisation time. The obtained data reveal that the addition of both 1 wt% and 2 wt% causes a considerable change in the PMMA colour: its whitening. To summarise, the reduced polymerisation time of the new biomaterial fully enables performance of standard procedures related to creation of dental prosthesis bases. Due to the considerable change in the colour, the clinical application is limited to performance of repairs or relining of the prosthesis, where the new material is located in an unaesthetic zone.

Keywords: colour; denture bases; nanocomposites; poly(methyl methacrylate); polymerisation time; titanium dioxide nanoparticles (TiO2 NPs).