Origin of the selectivity differences of aromatic alcohols and amines of different n-alkyl chain length separated with perfluorinated C8 and bidentated C8 modified silica hydride stationary phases

Anal Chim Acta X. 2018 Dec 28:1:100003. doi: 10.1016/j.acax.2018.100003. eCollection 2019 Mar.

Abstract

Perfluorinated C8-(PerfluoroC8) and bidentate anchored C8-(BDC8)-modified silica hydride stationary phases have been employed for the isocratic separation of homologous phenylalkanols and phenylalkylamines differing in their n-alkyl chain length, using aqueous-acetonitrile (ACN) mobile phases of different ACN contents from 10 to 90% (v/v) in 10% increments. These analytes showed reversed-phase (RP) retention behaviour with mobile phases of <40% (v/v) ACN content with both stationary phases but with the BDC8 stationary phase providing longer retention. The PerfluoroC8, but not the BDC8, stationary phase also exhibited significant retention of these analytes under conditions typical of an aqueous normal phase (ANP) mode (i.e. with mobile phases of >80% (v/v) ACN content), with the analytes exhibiting overall U-shape retention dependencies on the ACN content of the mobile phase. Further, these stationary phases showed differences in their selectivity behaviour with regard to the n-alkyl chain lengths of the different analytes. These observations could not be explained in terms of pK a , log P, molecular mass or linear solvation energy concepts. However, density functional theory (DFT) simulations provided a possible explanation for the observed selectivity trends, namely differences in the molecular geometries and structural organisation of the immobilised ligands of these two stationary phases under different solvational conditions. For mobile phase conditions favouring the RP mode, these DFT simulations revealed that interactions between adjacent BDC8 ligands occur, leading to a stationary phase with a more hydrophobic surface. Moreover, under mobile phase conditions favouring retention of the analytes in an ANP mode, these interactions of the bidentate-anchored C8 ligands resulted in hindered analyte access to potential ANP binding sites on the BDC8 stationary phase surface. With the PerfluoroC8 stationary phase, the DFT simulations revealed strong repulsion of individual perfluoroC8 ligand chains, with the perfluoroC8 ligands of this stationary phase existing in a more open brush-like state (and with a less hydrophobic surface) compared to the BDC8 ligands. These DFT simulation results anticipated the chromatographic findings that the phenylalkanols and phenylalkylamines had reduced retention in the RP mode with the PerfluoroC8 stationary phase. Moreover, the more open ligand structure of the PerfluoroC8 stationary phase enabled greater accessibility of the analytes to water solvated binding sites on the stationary phase surface under mobile phase conditions favouring an ANP retention mode, leading to retention of the analytes, particularly the smaller phenylalkylamines, via hydrogen bonding and electrostatic effects.

Keywords: ACN, acetonitrile; ANP, aqueous normal-phase; Aqueous normal-phase; BDC8, bidentate octyl; DFT, density functional theory; DH, Diamond Hydride; HILIC, hydrophilic interaction chromatography; LC, liquid chromatography; LSER, linear solvation energy relationship; PerfluoroC8, perfluorinated octyl; RP, reversed-phase; Reversed-phase; Shape specific separation; Silica hydride; n-alkyl chain length selectivities.