Boosting Capacitive Sodium-Ion Storage in Electrochemically Exfoliated Graphite for Sodium-Ion Capacitors

ACS Appl Mater Interfaces. 2020 Nov 25;12(47):52635-52642. doi: 10.1021/acsami.0c14611. Epub 2020 Nov 13.

Abstract

Sodium (Na)-ion capacitors possess higher energy density than supercapacitors and higher power density than Na-ion batteries. However, kinetic mismatches between fast capacitive charge storage on the cathode and sluggish battery-type reactions on the anode lead to a poor charge/discharge rate capability and insufficient power output of Na-ion capacitors. Thus, developing suitable anode materials for Na-ion capacitors is urgently desirable. This work demonstrates an electrochemically exfoliated graphite (EEG) anode with enhanced capacitive charge storage, greatly boosting the Na-ion reaction kinetics of co-intercalation. The EEG anode shows a high reversible capacity of 109 mAh g-1 and maintains a good capacity retention of 90% after 1000 cycles. The assembled Na-ion capacitor using the EEG anode can finish the charge/discharge process in less than 10 s, which achieves an ultrahigh power density of 17,500 W kg-1 with an energy density of 17 Wh kg-1. The high capacitive contributions at both the anode and cathode contribute to the fast rate capability and high power output of the fabricated Na-ion capacitors. This work will promote the development of ultrafast charging sodium-ion storage devices.

Keywords: capacitive sodium-ion storage; electrochemically exfoliated graphite; first-principles calculations; sodium-ion capacitors; solvent co-intercalation.