Design, synthesis and evaluation of calix[4]arene-based carbonyl amide derivatives with antitumor activities

Eur J Med Chem. 2021 Jan 15:210:112984. doi: 10.1016/j.ejmech.2020.112984. Epub 2020 Nov 4.

Abstract

Calixarenes, with potential functionalization on the upper and lower rim, have been explored in recent years for the design and construction of anticancer agents in the field of drugs and pharmaceuticals. Herein, optimization of bis [N-(2-hydroxyethyl) aminocarbonylmethoxyl substituted calix [4] arene (CLX-4) using structure-based drug design and traditional medicinal chemistry led to the discovery of series of calix [4]arene carbonyl amide derivatives 5a-5t. Evaluation of the cytotoxicity of 5a-5t employing MTT assay in MCF-7, MDA-MB-231 (human breast cancer cells), HT29 (human colon carcinoma cells), HepG2 (human hepatocellular carcinoma cells), A549 (human lung adenocarcinoma cells) and HUVEC (Human Umbilical Vein Endothelial) cells demonstrated that the most promising compound 5h displayed the most superior inhibitory effect against A549 and MDA-MB-231 cells, which were 3.2 times and 6.8 times of CLX-4, respectively. In addition, the cell inhibition rate (at 10 μM) against normal HUVEC cells in vitro was only 9.6%, indicating the safty of compound 5h. Moreover, compound 5h could inhibit the migration of MDA-MB-231 cell in wound healing assay. Further mechanism studies significantly indicated that compound 5h could block MDA-MB-231 cell cycle arrest in G0/G1 phase by down regulating cyclin D1 and CDK4, and induce apoptosis by up-regulation of Bax, down-regulation of Caspase-3, PARP and Bcl-2 proteins, resulting in the reduction of DNA synthesis and cell division arrest. This work provides worthy of further exploration for the promising calixarene-based anticancer drugs.

Keywords: Apoptosis; Calix[4]arene derivatives; Cell cycle; Cell migration; Cytotoxicity evaluation.

MeSH terms

  • Amides / chemistry
  • Amides / pharmacology*
  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Calixarenes / chemical synthesis
  • Calixarenes / chemistry
  • Calixarenes / pharmacology*
  • Cell Cycle / drug effects
  • Cell Proliferation / drug effects
  • Cell Survival / drug effects
  • Cells, Cultured
  • Dose-Response Relationship, Drug
  • Drug Design*
  • Drug Screening Assays, Antitumor
  • Humans
  • Molecular Structure
  • Phenols / chemical synthesis
  • Phenols / chemistry
  • Phenols / pharmacology*
  • Structure-Activity Relationship
  • Wound Healing / drug effects

Substances

  • Amides
  • Antineoplastic Agents
  • Phenols
  • calix(4)arene
  • Calixarenes