Giant low-field tunability of THz transmission in patterned magnetic split-ring metastructures

Opt Express. 2020 Nov 9;28(23):34035-34044. doi: 10.1364/OE.409312.

Abstract

Mirror-asymmetric split-ring metamaterials with high quality factor in the terahertz (THz) band, consisting of patterned high magnetic permeability and low coercivity FeNHf films deposited on high resistivity silicon substrates, were studied for their magnetic field tunable response in frequency and transmission. Dynamic tuning of terahertz transmission and electromagnetic resonance modes were investigated theoretically and experimentally as a function of magnetization of the FeNHf film. Experimental results indicate that the metamaterial structure provides a giant tunability of resonance frequency (Δfr/fr=3.3%) and transmittivity (21%) at a frequency of 0.665 THz under a low magnetic field of H=100 Oe. Remarkable tuning coefficients of frequency and transmittivity, 0.23 GHz/Oe and 0.21%/Oe, respectively, were measured. Finite difference time domain simulations reveal that the incredible tunability stems predominately from the response of the THz dynamic magnetic field to magnetization. As a result, the metamaterial, consisting of a simple magnetic split-ring microstructure, provides previously unimagined paths to tunable devices for potential use in emerging THz technologies including 6G communication systems and networks.