New insights into trace elements in the water cycle of a karst-dominated glacierized region, southeast Tibetan Plateau

Sci Total Environ. 2021 Jan 10:751:141725. doi: 10.1016/j.scitotenv.2020.141725. Epub 2020 Aug 15.

Abstract

Trace elements (TEs) in water are crucial parameters for assessing water quality. However, detailed studies are limited on TEs in the hydrological system of the Tibetan plateau (TP). Here, we sampled snow, river water, and groundwater in Yulong Snow Mountain (Mt. Yulong) region, southeast TP, in 2016 and analyzed the concentrations of nine TEs (namely Al, Mn, Fe, Cr, Ni, Cu, Zn, As, and Pb). In snow, the average concentrations of Fe, Zn, and Al were >10 μg/L, whereas other elements, including Cr, Ni, Cu, As, Hg, and Pb, exhibited average concentrations <1 μg/L. The concentrations of Al, Mn, Fe, Zn, and As were higher in rivers than in snow. According to enrichment factors (EFs), Zn concentration in snow was highly influenced by anthropogenic activities, whereas Mn, Fe, Cr, and As were uninfluenced. River and lake/reservoir water near human settlements were affected by anthropogenic activities. However, groundwater around Mt. Yulong is not contaminated yet. The increasing EFs in Mt. Yulong snowpit are consistent with those of southern TP snowpits, suggesting that the area has been affected by anthropogenic activities both from local emissions and long-distance transport of pollutants from South Asia. A conceptual model was proposed to show TEs in the water cycle. Although water quality is good overall in Mt. Yulong region, threats to the water environment still exit due to increasing anthropogenic activities and climate warming. The accelerated ablation of cryosphere due to climate warming could be a source of TEs in rivers and groundwater, which should be paid attention to in the future.

Keywords: Source identification; Tibetan Plateau; Trace elements; Water quality; Yulong Snow Mountain.