Vaping disrupts ventilation-perfusion matching in asymptomatic users

J Appl Physiol (1985). 2021 Feb 1;130(2):308-317. doi: 10.1152/japplphysiol.00709.2020. Epub 2020 Nov 12.

Abstract

Inhalation of e-cigarette's aerosols (vaping) has the potential to disrupt pulmonary gas exchange, but the effects in asymptomatic users are unknown. We assessed ventilation-perfusion (V̇A/Q̇) mismatch in asymptomatic e-cigarette users, using magnetic resonance imaging (MRI). We hypothesized that vaping induces V̇A/Q̇ mismatch through alterations in both ventilation and perfusion distributions. Nine young, asymptomatic "Vapers" with >1-yr vaping history, and no history of cardiopulmonary disease, were imaged supine using proton MRI, to assess the right lung at baseline and immediately after vaping. Seven young "Controls" were imaged at baseline only. Relative dispersion (SD/means) was used to quantify the heterogeneity of the individual ventilation and perfusion distributions. V̇A/Q̇ mismatch was quantified using the second moments of the ventilation and perfusion versus V̇A/Q̇ ratio distributions, log scale, LogSDV̇, and LogSDQ̇, respectively, analogous to the multiple inert gas elimination technique. Spirometry was normal in both groups. Ventilation heterogeneity was similar between groups at baseline (Vapers, 0.43 ± 0.13; Controls, 0.51 ± 0.11; P = 0.13) but increased after vaping (to 0.57 ± 0.17; P = 0.03). Perfusion heterogeneity was greater (P = 0.04) in Vapers at baseline (0.53 ± 0.06) compared with Controls (0.44 ± 0.10) but decreased after vaping (to 0.42 ± 0.07; P = 0.005). Vapers had greater (P = 0.01) V̇A/Q̇ mismatch at baseline compared with Controls (LogSDQ̇ = 0.61 ± 0.12 vs. 0.43 ± 0.12), which was increased after vaping (LogSDQ̇ = 0.73 ± 0.16; P = 0.03). V̇A/Q̇ mismatch is greater in Vapers and worsens after vaping. This suggests subclinical alterations in lung function not detected by spirometry.NEW & NOTEWORTHY This research provides evidence of vaping-induced disruptions in ventilation-perfusion matching in young, healthy, asymptomatic adults with normal spirometry who habitually vape. The changes in ventilation and perfusion distributions, both at baseline and acutely after vaping, and the potential implications on hypoxic vasoconstriction are particularly relevant in understanding the pathogenesis of vaping-induced dysfunction. Our imaging-based approach provides evidence of potential subclinical alterations in lung function below thresholds of detection using spirometry.

Keywords: e-cigarette; gas exchange; perfusion heterogeneity; ventilation heterogeneity; ventilation-perfusion matching.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Electronic Nicotine Delivery Systems*
  • Lung
  • Perfusion
  • Pulmonary Gas Exchange
  • Vaping*
  • Ventilation-Perfusion Ratio