Proteomic Identification of Coxiella burnetii Effector Proteins Targeted to the Host Cell Mitochondria During Infection

Mol Cell Proteomics. 2021:20:100005. doi: 10.1074/mcp.RA120.002370. Epub 2020 Dec 3.

Abstract

Modulation of the host cell is integral to the survival and replication of microbial pathogens. Several intracellular bacterial pathogens deliver bacterial proteins, termed "effector proteins" into the host cell during infection by sophisticated protein translocation systems, which manipulate cellular processes and functions. The functional contribution of individual effectors is poorly characterized, particularly in intracellular bacterial pathogens with large effector protein repertoires. Technical caveats have limited the capacity to study these proteins during a native infection, with many effector proteins having only been demonstrated to be translocated during over-expression of tagged versions. Here, we developed a novel strategy to examine effector proteins in the context of infection. We coupled a broad, unbiased proteomics-based screen with organelle purification to study the host-pathogen interactions occurring between the host cell mitochondrion and the Gram-negative, Q fever pathogen Coxiella burnetii. We identify four novel mitochondrially-targeted C. burnetii effector proteins, renamed Mitochondrial Coxiella effector protein (Mce) B to E. Examination of the subcellular localization of ectopically expressed proteins confirmed their mitochondrial localization, demonstrating the robustness of our approach. Subsequent biochemical analysis and affinity enrichment proteomics of one of these effector proteins, MceC, revealed the protein localizes to the inner membrane and can interact with components of the mitochondrial quality control machinery. Our study adapts high-sensitivity proteomics to study intracellular host-pathogen interactions, providing a robust strategy to examine the subcellular localization of effector proteins during native infection. This approach could be applied to a range of pathogens and host cell compartments to provide a rich map of effector dynamics throughout infection.

Keywords: Bacterial effector protein; Coxiella burnetii; Host-pathogen interactions; Intracellular bacteria; Label-free quantitative proteomics; Mitochondria; Organelle purification; Proteomics screen; T4SS; protein targeting.

MeSH terms

  • Bacterial Proteins / metabolism*
  • Coxiella burnetii / physiology*
  • HEK293 Cells
  • HeLa Cells
  • Host-Pathogen Interactions*
  • Humans
  • Mitochondria / metabolism*
  • Mitochondria / microbiology*
  • Proteome
  • Proteomics
  • Q Fever
  • THP-1 Cells

Substances

  • Bacterial Proteins
  • Proteome