Copper(I)-Catalyzed Asymmetric 1,4-Conjugate Hydrophosphination of α,β-Unsaturated Amides

J Am Chem Soc. 2020 Nov 25;142(47):20098-20106. doi: 10.1021/jacs.0c09654. Epub 2020 Nov 11.

Abstract

A catalytic asymmetric conjugate hydrophosphination of α,β-unsaturated amides is accomplished by virtue of the strong nucleophilicity of copper(I)-PPh2 species, which provides an array of chiral phosphines bearing an amide moiety in high to excellent yields with excellent enantioselectivity. Furthermore, the dynamic kinetic resolution of unsymmetrical diarylphosphines (HPAr1Ar2) is successfully carried out through the copper(I)-catalyzed conjugate addition to α,β-unsaturated amides, which affords P-chiral phosphines with good-to-high diastereoselectivity and high enantioselectivity. 1H NMR studies show that the precoordination of HPPh2 to copper(I)-bisphosphine complex is critical for the efficient deprotonation by Barton's Base. Moreover, the relative stability of the copper(I)-(R,RP)-TANIAPHOS complex in the presence of excessive HPPh2, confirmed by 31P NMR studies, is pivotal for the high asymmetric induction, as the ligand exchange between bisphosphine and HPPh2 would significantly reduce the enantioselectivity. At last, a double catalytic asymmetric conjugate hydrophosphination furnishes the corresponding product in high yield with high diastereoselectivity and excellent enantioselectivity, which is transformed to a chiral pincer palladium complex in moderate yield. This chiral palladium complex is demonstrated as an excellent catalyst in the asymmetric conjugate hydrophosphination of chalcone.