Reversible Spin-State Switching and Tuning of Nuclearity and Dimensionality via Nonlinear Pseudohalides in Cobalt(II) Complexes

Inorg Chem. 2020 Dec 7;59(23):17638-17649. doi: 10.1021/acs.inorgchem.0c02887. Epub 2020 Nov 11.

Abstract

The self-assembly of a macrocyclic tetradentate ligand, cobalt(II) tetrafluoroborate, and nonlinear pseudohalides (dicyanamide and tricyanomethanide) has led to two cobalt(II) complexes, {[Co(L)(μ1,5-dca)](BF4)·MeOH}n (1) and [Co2(L)21,5-tcm)2](BF4)2 (2) (L = N,N'-di-tert-butyl-2,11-diaza[3,3](2,6)pyridinophane; dca- = dicyanamido; tcm- = tricyanomethanido). Both complexes were characterized by single-crystal X-ray diffraction, spectroscopic, magnetic, and electrochemical studies. Structural analyses revealed that 1 displays a one-dimensional (1D) coordination polymer containing [Co(L)]2+ repeating units bridged by μ1,5-dicyanamido groups in cis positions, while 2 represents a discreate dinuclear cobalt(II) molecule bridged by two μ1,5-tricyanomethanido groups in a cis conformation. Both complexes have a CoN6 coordination environment around each cobalt center offered by the tetradentate ligand and cis coordinating bridging ligands. Complex 1 exhibits a high-spin (S = 3/2) state of cobalt(II) in the temperature range of 2-300 K with a weak ferromagnetic coupling between two dicyanamido-bridged cobalt(II) centers. Interestingly, complex 2 exhibits reversible spin-state switching associated with spin-spin coupling. Complexes 1 and 2 also exhibit interesting redox-stimuli-based reversible paramagnetic high-spin cobalt(II) to diamagnetic low-spin cobalt(III) conversion, offering an additional way to switch magnetic properties. A detailed theoretical calculation was consistent with the stated results.