Self-Assembly Approach Towards MoS2 -Embedded Hierarchical Porous Carbons for Enhanced Electrocatalytic Hydrogen Evolution

Chemistry. 2021 Jan 26;27(6):2155-2164. doi: 10.1002/chem.202004371. Epub 2020 Dec 22.

Abstract

Transition metal-based nanoparticle-embedded carbon materials have received increasing attention for constructing next-generation electrochemical catalysts for energy storage and conversion. However, designing hybrid carbon materials with controllable hierarchical micro/mesoporous structures, excellent dispersion of metal nanoparticles, and multiple heteroatom-doping remains challenging. Here, a novel pyridinium-containing ionic hypercrosslinked micellar frameworks (IHMFs) prepared from the core-shell unimicelle of s-poly(tert-butyl acrylate)-b-poly(4-bromomethyl) styrene (s-PtBA-b-PBMS) and linear poly(4-vinylpyridine) were used as self-sacrificial templates for confined growth of molybdenum disulfide (MoS2 ) inside cationic IHMFs through electrostatic interaction. After pyrolysis, MoS2 -anchored nitrogen-doped porous carbons possessing tunable hierarchical micro/mesoporous structures and favorable distributions of MoS2 nanoparticles exhibited excellent electrocatalytic activity for hydrogen evolution reaction as well as small Tafel slope of 66.7 mV dec-1 , low onset potential, and excellent cycling stability under acidic condition. Crucially, hierarchical micro/mesoporous structure and high surface area could boost their catalytic hydrogen evolution performance. This approach provides a novel route for preparation of micro/mesoporous hybrid carbon materials with confined transition metal nanoparticles for electrochemical energy conversion.

Keywords: electrocatalysis; hypercrosslinked framework; micelle; molybdenum disulfide; porous carbon.