Dental Pulp Cell Sheets Enhance Facial Nerve Regeneration via Local Neurotrophic Factor Delivery

Tissue Eng Part A. 2021 Sep;27(17-18):1128-1139. doi: 10.1089/ten.TEA.2020.0265. Epub 2020 Dec 21.

Abstract

An effective strategy for sustained neurotrophic factor (NTF) delivery to sites of peripheral nerve injury (PNI) would accelerate healing and enhance functional recovery, addressing the major clinical challenges associated with the current standard of care. In this study, scaffold-free cell sheets were generated using human dental pulp stem/progenitor cells, that endogenously express high levels of NTFs, for use as bioactive NTF delivery systems. Additionally, the effect of fibroblast growth factor 2 (FGF2) on NTF expression by dental pulp cell (DPC) sheets was evaluated. In vitro analysis confirmed that DPC sheets express high levels of NTF messenger RNA (mRNA) and proteins, and the addition of FGF2 to DPC sheet culture increased total NTF production by significantly increasing the cellularity of sheets. Furthermore, the DPC sheet secretome stimulated neurite formation and extension in cultured neuronal cells, and these functional effects were further enhanced when DPC sheets were cultured with FGF2. These neuritogenic results were reversed by NTF inhibition substantiating that DPC sheets have a positive effect on neuronal cell activity through the production of NTFs. Further evaluation of DPC sheets in a rat facial nerve crush injury model in vivo established that in comparison with untreated controls, nerves treated with DPC sheets had greater axon regeneration through the injury site and superior functional recovery as quantitatively assessed by compound muscle action potential measurements. This study demonstrates the use of DPC sheets as vehicles for NTF delivery that could augment the current methods for treating PNIs to accelerate regeneration and enhance the functional outcome. Impact statement The major challenges associated with current treatments of peripheral nerve injuries (PNIs) are prolonged repair times and insufficient functional recovery. Dental pulp stem/progenitor cells (DPCs) are known to endogenously express high levels of neurotrophic factors (NTFs), growth factors that enhance axon regeneration. In this study, we demonstrate that scaffold-free DPC sheets can act as effective carrier systems to facilitate the delivery and retention of NTF-producing DPCs to sites of PNIs and improve functional nerve regeneration. DPC sheets have high translational feasibility and could augment the current standard of care to enhance the quality of life for patients dealing with PNIs.

Keywords: adult stem cells; dental stem cells; neural crest stem cells; neurotrophins; peripheral nerve; scaffold-free.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Axons*
  • Dental Pulp
  • Facial Nerve
  • Humans
  • Nerve Growth Factors
  • Nerve Regeneration*
  • Quality of Life
  • Rats

Substances

  • Nerve Growth Factors