Driving force balance-the "identity card" of supramolecules in a self-sorting multicomponent assembly system

Soft Matter. 2021 Jan 7;17(1):153-159. doi: 10.1039/d0sm01405b. Epub 2020 Nov 9.

Abstract

Contrary to the popular belief that multicomponent assembly systems will theoretically co-assemble under the same type of driving forces, two distinct assembly modes from a system composed of two chemically similar supramolecules were demonstrated in this work. Although with exactly the same driving forces, molecule-level self-sorting unexpectedly occurred in this two-component system made of polyhedral oligomeric silsesquioxane (POSS) core-based supramolecules with one and eight lysine derivative arms. From the experiments, it was concluded that instead of driving force types, driving force counterpoise plays a vital role here, which we called "identity card hypothesis". The hypothesis suggests that two highly similar components show high affinity for the same molecules through the differentiated "identity card"-like balance of driving forces induced by the difference in the molecular spatial shape, which has never been reported before.