Terlipressin relieves intestinal and renal injuries induced by acute mesenteric ischemia via PI3K/Akt pathway

Int J Med Sci. 2020 Sep 28;17(17):2751-2762. doi: 10.7150/ijms.46302. eCollection 2020.

Abstract

Background: To date, the effect of vasopressin on organ damages after acute mesenteric ischemia (MI) remains poorly understood. Aims: To investigate the effect of terlipressin, a selective vasopressin V1 receptor agonist, versus norepinephrine on the intestinal and renal injuries after acute MI, and to explore the underlying mechanism of terlipressin. Methods: Acute MI model was produced by clamping the superior mesenteric artery for 1 hour. Immediately after unclamping, terlipressin or norepinephrine was intravenously administered for 2 hours. Meanwhile, in vitro, RAW264.7 cells were treated with lipopolysaccharide or lipopolysaccharide+terlipressin. In addition, wortmannin was used to determine the role of phosphoinositide 3-kinase (PI3K)/ protein kinase B (Akt) pathway in the potential impacts of terlipressin. Results: MI led to severe hypotension, caused notable intestinal and renal impairments and resulted in high mortality, which were markedly improved by terlipressin or norepinephrine. Terlipressin increased mean arterial pressure, decreased intestinal epithelial cell apoptosis, inhibited the generation of M1 macrophage in intestinal and renal tissues, and hindered the release of inflammatory cytokines after MI. Moreover, in cultured macrophages, terlipressin reduced the mRNA level of specific M1 markers and the release of inflammatory cytokines caused by lipopolysaccharide challenge. Wortmannin decreased the expression of PI3K and Akt induced by terlipressin in cells and in tissues, and abolished the above protective effects conferred by terlipressin. Conclusions: Terlipressin or norepinephrine could effectively improve organ damages and mortality after acute MI. Terlipressin elevates blood pressure and inhibits intestinal epithelial apoptosis and macrophage M1 polarization via the PI3K/Akt pathway.

Keywords: V1 receptor; apoptosis; intestine; ischemia reperfusion injury; macrophage polarization; vasopressor.

Publication types

  • Comparative Study

MeSH terms

  • Acute Kidney Injury / drug therapy*
  • Acute Kidney Injury / etiology
  • Acute Kidney Injury / pathology
  • Animals
  • Apoptosis / drug effects
  • Arterial Pressure / drug effects
  • Disease Models, Animal
  • Humans
  • Ileum / blood supply
  • Ileum / drug effects
  • Ileum / pathology
  • Intestinal Mucosa / blood supply
  • Intestinal Mucosa / drug effects
  • Intestinal Mucosa / pathology
  • Kidney / blood supply
  • Kidney / drug effects
  • Kidney / pathology
  • Male
  • Mesenteric Ischemia / complications
  • Mesenteric Ischemia / drug therapy*
  • Mesenteric Ischemia / pathology
  • Norepinephrine / administration & dosage
  • Phosphatidylinositol 3-Kinase / metabolism
  • Phosphoinositide-3 Kinase Inhibitors / administration & dosage
  • Proto-Oncogene Proteins c-akt / metabolism
  • Rats
  • Receptors, Vasopressin / agonists*
  • Reperfusion Injury / drug therapy*
  • Reperfusion Injury / etiology
  • Reperfusion Injury / pathology
  • Specific Pathogen-Free Organisms
  • Terlipressin / administration & dosage*
  • Wortmannin / administration & dosage

Substances

  • Phosphoinositide-3 Kinase Inhibitors
  • Receptors, Vasopressin
  • Terlipressin
  • Phosphatidylinositol 3-Kinase
  • Akt1 protein, rat
  • Proto-Oncogene Proteins c-akt
  • Norepinephrine
  • Wortmannin