Cytotoxic components from the leaves of Erythrophleum fordii induce human acute leukemia cell apoptosis through caspase 3 activation and PARP cleavage

Bioorg Med Chem Lett. 2021 Jan 1:31:127673. doi: 10.1016/j.bmcl.2020.127673. Epub 2020 Nov 5.

Abstract

Cassaine diterpenoids as erythrofordins A-C (1-3), pseudo-erythrosuamin (4), and erythrofordin U (5) isolated from the leaves of Vietnamese Erythrophleum fordii Oliver were tested cytotoxic activity against human leukemia cancer cells. The results showed that these metabolites exhibited dose-dependent cytotoxicity against human leukemia HL-60 and KG cells with IC50 values ranging from 15.2 ± 1.5 to 42.2 ± 3.6 µM. Treatment with erythrofordin B led to the apoptosis of HL-60 and KG cells due to the activation of caspase 3, caspase 9, and poly (ADP-ribose) polymerase (PARP). Erythrofordin B significantly increased Bak protein expression, but downregulated the anti-apoptotic protein Bcl-2, in HL-60 cells. In silico results demonstrated that erythrofordin B can bind to both the procaspase-3 allosteric site and the PARP-1 active site, with binding energies of -7.36 and -10.76 kcal/mol, respectively. These results indicated that the leaves of Vietnamese E. fordii, which contain cassaine diterpenoids, can induce the apoptosis of human leukemia cancer cells.

Keywords: Caesalpinioideae; Cassaine diterpenoid; Erythrofordins; Erythrophleum fordii oliver; Human leukemia cancer cells; Molecular docking.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents, Phytogenic / chemistry
  • Antineoplastic Agents, Phytogenic / isolation & purification
  • Antineoplastic Agents, Phytogenic / pharmacology*
  • Apoptosis / drug effects*
  • Caspase 3 / metabolism*
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Cell Survival / drug effects
  • Dose-Response Relationship, Drug
  • Drug Screening Assays, Antitumor
  • Fabaceae / chemistry*
  • Humans
  • Models, Molecular
  • Molecular Structure
  • Plant Extracts / chemistry
  • Plant Extracts / isolation & purification
  • Plant Extracts / pharmacology*
  • Plant Leaves / chemistry
  • Poly (ADP-Ribose) Polymerase-1 / antagonists & inhibitors*
  • Poly (ADP-Ribose) Polymerase-1 / metabolism
  • Poly(ADP-ribose) Polymerase Inhibitors / chemistry
  • Poly(ADP-ribose) Polymerase Inhibitors / isolation & purification
  • Poly(ADP-ribose) Polymerase Inhibitors / pharmacology*
  • Structure-Activity Relationship

Substances

  • Antineoplastic Agents, Phytogenic
  • Plant Extracts
  • Poly(ADP-ribose) Polymerase Inhibitors
  • PARP1 protein, human
  • Poly (ADP-Ribose) Polymerase-1
  • CASP3 protein, human
  • Caspase 3