Involvement of BbTpc1, an important Zn(II)2Cys6 transcriptional regulator, in chitin biosynthesis, fungal development and virulence of an insect mycopathogen

Int J Biol Macromol. 2021 Jan 1:166:1162-1172. doi: 10.1016/j.ijbiomac.2020.10.271. Epub 2020 Nov 4.

Abstract

Chitin is one of the major components of the fungal cell wall and contributes to the mechanical strength and shape of the fungal cell. Zn(II)2Cys6 transcription factors are unique to the fungal kingdom and have a variety of functions in some fungi. However, the mechanisms by which Zn(II)2Cys6 proteins affect entomopathogenic fungi are largely unknown. Here, we characterized the Zn(II)2Cys6 transcription factor BbTpc1 in the insect pathogenic fungus Beauveria bassiana. Disruption of BbTpc1 resulted in a distinct changes in vegetative growth and septation patterns, and a significant decrease in conidia and blastospore yield. The ΔBbTpc1 mutant displayed impaired resistance to chemical stresses and heat shock and attenuated virulence in topical and intrahemocoel injection assays. Importantly, the ΔBbTpc1 mutant had an abnormal cell wall with altered wall thickness and chitin synthesis, which were accompanied by transcriptional repression of the chitin synthetase family genes. In addition, comparative transcriptomics revealed that deletion of BbTpc1 altered fungal asexual reproduction via different genetic pathways. These data revealed that BbTpc1 regulates fungal development, chitin synthesis and biological control potential in B. bassiana.

Keywords: Chitin synthesis; Entomopathogenic fungi; Septation patterns; Transcription factor; Virulence; Zn(II)(2)Cys(6).

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Autophagy
  • Beauveria / genetics
  • Beauveria / growth & development*
  • Beauveria / pathogenicity*
  • Cell Wall / metabolism
  • Chitin / biosynthesis*
  • Fungal Proteins / chemistry
  • Fungal Proteins / genetics
  • Fungal Proteins / metabolism*
  • Gene Deletion
  • Hyphae / growth & development
  • Insecta / microbiology*
  • Mutation / genetics
  • Phylogeny
  • Reproduction, Asexual
  • Spores, Fungal / growth & development
  • Stress, Physiological
  • Transcription Factors / metabolism*
  • Transcriptome / genetics
  • Virulence

Substances

  • Fungal Proteins
  • Transcription Factors
  • Chitin