Evaluation of Water-Soluble Mannich Base Prodrugs of 2,3,4,5-Tetrahydroazepino[4,3-b]indol-1(6H)-one as Multitarget-Directed Agents for Alzheimer's Disease

ChemMedChem. 2021 Feb 4;16(3):589-598. doi: 10.1002/cmdc.202000583. Epub 2020 Dec 4.

Abstract

Different Mannich base derivatives have been studied with the aim of addressing the poor aqueous solubility of the recently disclosed 6-phenethyl-2,3,4,5-tetrahydroazepino[4,3-b]indol-1(6H)-one (1), a human butyrylcholinesterase inhibitor (hBChE, IC50 13 nM) and protective agent in NMDA-induced neurotoxicity, in in vivo assays. The N-(4-methylpiperazin-1-yl)methyl derivative 2 c showed a 50-fold increase in solubility in pH 7.4-buffered solution, high stability in serum and (half-life >24 h) and rapid (<3 min) conversion to 1 at acidic pH. Although less active than 1, 2 c retained moderate hBChE inhibition (IC50 =3.35 μM) and a significant protective effect against NMDA-induced neurotoxicity at 0.1 μM. Moreover, 2 c resulted a weaker serum albumin binder than 1, could pass the blood-brain barrier, and exerted negligible cytotoxicity on HepG2 cells. These findings suggest that 2 c could be a water-soluble prodrug candidate of 1 for oral administration or a slow-release injectable derivative in in vivoAlzheimer's disease models.

Keywords: Alzheimer disease; Mannich bases; azepinoindolone derivatives; butyrylcholinesterase inhibitor; water-soluble prodrugs.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetylcholinesterase / metabolism
  • Alzheimer Disease / drug therapy*
  • Alzheimer Disease / metabolism
  • Butyrylcholinesterase / metabolism
  • Cell Line, Tumor
  • Cell Survival / drug effects
  • Cholinesterase Inhibitors / chemical synthesis
  • Cholinesterase Inhibitors / chemistry
  • Cholinesterase Inhibitors / pharmacology*
  • Dose-Response Relationship, Drug
  • Humans
  • Mannich Bases / chemical synthesis
  • Mannich Bases / chemistry
  • Mannich Bases / pharmacology*
  • Models, Molecular
  • Molecular Structure
  • Neuroprotective Agents / chemical synthesis
  • Neuroprotective Agents / chemistry
  • Neuroprotective Agents / pharmacology*
  • Prodrugs / chemical synthesis
  • Prodrugs / chemistry
  • Prodrugs / pharmacology*
  • Solubility
  • Structure-Activity Relationship
  • Water / chemistry

Substances

  • Cholinesterase Inhibitors
  • Mannich Bases
  • Neuroprotective Agents
  • Prodrugs
  • Water
  • Acetylcholinesterase
  • Butyrylcholinesterase