Mechanism for Higher Tolerance to and Lower Accumulation of Arsenite in NtCyc07-Overexpressing Tobacco

Plants (Basel). 2020 Nov 3;9(11):1480. doi: 10.3390/plants9111480.

Abstract

Arsenite [As(III)] is a highly toxic chemical to all organisms. Previously, we reported that the overexpression of NtCyc07 enhanced As(III) tolerance and reduced As(III) accumulation in yeast (Saccharomyces cerevisiae) and tobacco (Nicotiana tabacum). To understand a mechanism for higher As(III) tolerance and lower As(III) accumulation in NtCyc07-overexpressing tobacco, we examined the expression levels of various putative As(III) transporters (aquaporin). The expressions of putative As(III) exporter NIP1;1, PIP1;1, 1;5, 2;1, 2;2, and 2;7 were enhanced, while the expressions of putative As(III) importer NIP3;1, 4;1, and XIP2;1 were decreased, contributing to the reduced accumulation of As(III) in NtCyc07-overexpressing tobacco. In addition, the levels of oxidative stress indicators (H2O2, superoxide and malondialdehyde) were lower, and the activities of antioxidant enzymes (catalase, superoxide dismutase and glutathione reductase) were higher in NtCyc07-tobacco than in the control tobacco. This suggests that the lower oxidative stress in transgenic tobacco may be attributed to the higher activities of antioxidant enzymes and lower As(III) levels. Taken together, the overexpression of NtCyc07 enhances As(III) tolerance by reducing As(III) accumulation through modulation of expressions of putative As(III) transporters in tobacco.

Keywords: Cyc07; NIP; PIP; ROS; aquaporin; arsenic; tobacco.