The role of optical coherence tomography guidance in scaffold versus stent optimization

Egypt Heart J. 2020 Nov 5;72(1):77. doi: 10.1186/s43044-020-00110-z.

Abstract

Background: Optical coherence tomography showed a great ability to identify adverse features during percutaneous coronary intervention with drug-eluting stents and resulted in better clinical outcomes. The study aimed to assess the impact of optical coherence tomography on intraoperative decision-making during implantation of Absorb bioresorbable scaffolds versus everolimus drug-eluting stents.

Results: We performed an observational study that included 223 consecutive patients post optical coherence tomography-guided implantation of either Absorb bioresorbable scaffolds (162 patients) or everolimus drug-eluting stents (61 patients). We studied the influence of optical coherence tomography on intraoperative decision-making during implantation of bioresorbable scaffolds versus drug-eluting stents by analyzing the total rate of optical coherence tomography-dependent modifications in each device. After satisfactory angiographic results, the total rate of required intervention for optical coherence tomography detected complications was significantly higher in the bioresorbable scaffolds arm compared to drug-eluting stents arm (47.8% versus 32.9%, respectively; p = 0.019). The additional modifications encompassed further optimization in the case of device underexpansion or struts malapposition, and even stenting in the case of strut fractures, or significant edge dissection.

Conclusions: Compared to drug-eluting stents, Absord scaffold was associated with a significantly higher rate of optical coherence tomography-identified intraprocedural complications necessitating further modifications. The study provides some hints on the reasons of scaffolds failure in current PCI practice; it offers a new insight for the enhancement of BRS safety and presents and adds to the growing literature for successful BRS utilization.

Keywords: Bioresorbable scaffold; Malapposition; Optical coherence tomography; Strut fracture.