Trifolium Flavonoids Overcome Gefitinib Resistance of Non-Small-Cell Lung Cancer Cell by Suppressing ERK and STAT3 Signaling Pathways

Biomed Res Int. 2020 Oct 22:2020:2491304. doi: 10.1155/2020/2491304. eCollection 2020.

Abstract

Gefitinib is a tyrosine kinase inhibitor of EGFR (epidermal growth factor receptor) and represents the first-line treatment for EGFR mutation patients with NSCLC (non-small-cell lung cancer) therapeutics. However, NSCLC patients are inclined to develop acquired gefitinib drug resistance through nowadays, unarticulated mechanisms of chemoresistance. Here, we investigated the role of TF (Trifolium flavonoids) on sensitizing gefitinib resistance in NSCLC cells and revealed its potential mechanism of action. We demonstrated that TF exerted significantly potential chemosensitivity in gefitinib resistant NSCLC cells. MTT assay and cytological methods were used to analyze cell viability and apoptosis in NSCLC cell line PC-9R. Both TF and gefitinib suppressed PC-9R cell growth in a dose-dependent manner. Subtoxic concentrations of TF did significantly augment gefitinib-induced apoptosis in PC-9R cell line. The TF promoted chemosensitivity was major mediated by the PARP and caspases activation. Meanwhile, the TF promoted chemosensitivity also decreased the expression of Bcl-2 and Mcl-1. Finally, TF significantly reduced the phosphorylation levels of STAT3 and ERK. Altogether, the results of the present study indicated the potential mechanisms of chemosensitivity of TF in gefitinib-induced apoptosis of NSCLC by downregulating ERK and STAT3 signaling pathways and Bcl2 and Mcl-1 expression and a promising application of TF in therapy of NSCLC with gefitinib resistant.

MeSH terms

  • Antineoplastic Agents / pharmacology*
  • Apoptosis / drug effects
  • Apoptosis / genetics
  • Caspase 3 / genetics
  • Caspase 3 / metabolism
  • Caspase 8 / genetics
  • Caspase 8 / metabolism
  • Caspase 9 / genetics
  • Caspase 9 / metabolism
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Drug Resistance, Neoplasm / drug effects*
  • Drug Resistance, Neoplasm / genetics
  • Epithelial Cells / drug effects*
  • Epithelial Cells / metabolism
  • Epithelial Cells / pathology
  • Flavonoids / isolation & purification
  • Flavonoids / pharmacology*
  • Gefitinib / pharmacology
  • Gene Expression Regulation, Neoplastic / drug effects*
  • Humans
  • Myeloid Cell Leukemia Sequence 1 Protein / genetics
  • Myeloid Cell Leukemia Sequence 1 Protein / metabolism
  • Poly(ADP-ribose) Polymerases / genetics
  • Poly(ADP-ribose) Polymerases / metabolism
  • Proto-Oncogene Proteins c-bcl-2 / genetics
  • Proto-Oncogene Proteins c-bcl-2 / metabolism
  • Respiratory Mucosa / drug effects
  • Respiratory Mucosa / metabolism
  • Respiratory Mucosa / pathology
  • STAT3 Transcription Factor / genetics
  • STAT3 Transcription Factor / metabolism
  • Signal Transduction
  • Trifolium / chemistry*
  • bcl-2-Associated X Protein / genetics
  • bcl-2-Associated X Protein / metabolism

Substances

  • Antineoplastic Agents
  • BAX protein, human
  • BCL2 protein, human
  • Flavonoids
  • MCL1 protein, human
  • Myeloid Cell Leukemia Sequence 1 Protein
  • Proto-Oncogene Proteins c-bcl-2
  • STAT3 Transcription Factor
  • STAT3 protein, human
  • bcl-2-Associated X Protein
  • Poly(ADP-ribose) Polymerases
  • CASP3 protein, human
  • CASP8 protein, human
  • CASP9 protein, human
  • Caspase 3
  • Caspase 8
  • Caspase 9
  • Gefitinib