Lamb wave-based mapping of plate structures via frontier exploration

Ultrasonics. 2021 Feb:110:106282. doi: 10.1016/j.ultras.2020.106282. Epub 2020 Oct 25.

Abstract

Substantial improvements in material processing and manufacturing techniques in recent years necessitate the introduction of effective and efficient nondestructive testing (NDT) methods that can seamlessly integrate into day-to-day aircraft and aerospace operations. Lamb wave-based methods have been identified as one of the most promising candidates for the inspection of large-scale structures. At the same time, there is presently a high level of research in the field of autonomous mobile robotics, especially in simultaneous localization and mapping (SLAM). Thus, this paper investigates a means to automate Lamb wave-based NDT by positioning sensors along a planar structure through mobile service robots. To this end, a generalized method for the mapping of plate structures using scattered Lamb waves by means of frontier exploration is presented such that an autonomous SLAM-capable NDT system can become realizable. The performance of this novel Lamb wave-based frontier exploration is first evaluated in simulation. It is shown that it generally outperforms a random frontier exploration and may even perform near-optimal in the case of an isotropic, square panel. These findings are then validated in laboratory experiments, confirming the general feasibility of utilizing Lamb waves for SLAM. Furthermore, the versatility of the developed methodology is successfully demonstrated on a more complexly shaped stiffened panel.

Keywords: Frontier exploration; Lamb waves; Mapping; Nondestructive testing; Wave scattering.