Nanosensor-Based Flexible Electronic Assisted with Light Fidelity Communicating Technology for Volatolomics-Based Telemedicine

ACS Nano. 2020 Nov 24;14(11):15517-15532. doi: 10.1021/acsnano.0c06137. Epub 2020 Nov 3.

Abstract

Telemedicine provides an attractive vision for tele-monitoring human health conditions and, thus, offers the opportunity for timely preventing chronic disease. A key limitation of promoting telemedicine in clinic application is the lack of a noninvasive med-tech and effective monitoring platform, which should be wearable and capable of high-performance tele-monitoring of health risk. Here we proposed a volatolomics-based telemedicine for continuously and noninvasively assessing human health status through continuously tracking the variation of volatile markers derived from human breath or skin. Particularly, a nanosensor-based flexible electronic was specifically designed to serve as a powerful platform for implementing the proposed cost-effective healthcare. An all-flexible and highly packed makeup (all functional units were integrated in a 2*2*0.19 cm3 plate) enables an electronic, compact configuration and the capability of resisting negative impact derived from customers' daily movement. Notably, the nanosensor-based electronic demonstrates high specificity, quick response rate (t90% = 4.5 s), and desirable low detection limit (down to 0.117 ppm) in continuous tele-monitoring chronic-disease-related volatile marker (e.g., acetone). Assisted by the power saved light fidelity (Li-Fi) communicating technology, a clinic proof on the specifically designed electronic for noninvasively and uninterrupted assessing potential health risk (e.g., diabetics) is successfully implemented, with the accuracy of around 81%. A further increase in the accuracy of prewarning is predicted by excluding the impact of individual differences such as the gender, age, and smoking status of the customer. These promising pilot results indicate a bright future for the tailor-made nanosensing-device-supported volatolomics-based telemedicine in preventing chronic diseases and increasing patients' survival rate.

Keywords: image recognition; light fidelity; nanosensor; volatolomics-based telemedicine; wearable electronic.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Electronics
  • Humans
  • Technology
  • Telemedicine*