Leukemia cells remodel marrow adipocytes via TRPV4-dependent lipolysis

Haematologica. 2020 Nov 1;105(11):2572-2583. doi: 10.3324/haematol.2019.225763.

Abstract

Remodeling of adipocyte morphology and function plays a critical role in prostate cancer development. We previously reported that leukemia cells secrete growth differentiation factor 15 (GDF15),which remodels the residual bone marrow (BM) adipocytes into small adipocytes and is associated with a poor prognosis in acute myeloid leukemia (AML) patients. However, little is known about how GDF15 drives BM adipocyte remodeling. In this study, we examined the role of the transient receptor potential vanilloid (TRPV) channels in the remodeling of BM adipocytes exposed to GDF15. We found that TRPV4 negatively regulated GDF15-induced remodeling of BM adipocytes. Furthermore, transforming growth factor-β type II receptor (TGFβRII) was identified as the main receptor for GDF15 on BM adipocytes. PI3K inhibitor treatment reduced GDF15-induced pAKT, identifying PI3K/AKT as the downstream stress response pathway. Subsequently, GDF15 reduced the expression of the transcription factor Forkhead box C1 (FOXC1) in BM adipocytes subjected to RNA-seq screening and Western blot analyse. Moreover, it was also confirmed that FOXC1 combined with the TRPV4 promoter by the Chip-qPCR experiments, which suggests that FOXC1 mediates GDF15 regulation of TRPV4. In addition, an AML mouse model exhibited smaller BM adipocytes, whereas the TRPV4 activator 4α-phorbol 12,13-didecanoate (4αPDD) partly rescued this process and increased survival. In conclusion, TRPV4 plays a critical role in BM adipocyte remodeling induced by leukemia cells, suggesting that targeting TRPV4 may constitute a novel strategy for AML therapy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adipocytes / metabolism
  • Animals
  • Bone Marrow* / metabolism
  • Humans
  • Lipolysis
  • Mice
  • Phosphatidylinositol 3-Kinases / metabolism
  • TRPV Cation Channels* / genetics
  • TRPV Cation Channels* / metabolism

Substances

  • TRPV Cation Channels
  • TRPV4 protein, human
  • Trpv4 protein, mouse