Fractional structured molybdenum oxide catalyst as counter electrodes of all-solid-state fiber dye-sensitized solar cells

J Colloid Interface Sci. 2021 Feb 15:584:520-527. doi: 10.1016/j.jcis.2020.10.003. Epub 2020 Oct 12.

Abstract

A novel hierarchical solution-processed fractional structured molybdenum oxide (MoO3) catalyst is fabricated from tricarbonyltris (propionitrile) molybdenum and used as the counter electrode of all-solid-state fiber-shaped dye-sensitized solar cells (S-FDSSC). The Tafel plot results and electrical impedance spectroscopy suggest that the use of the fractional structured MoO3 catalyst enhances the efficiency of the reduction of I3- to 3I- at the counter electrode/electrolyte interface. Because of the improvements of the short-current circuit and fill factor, the power conversion efficiency of the MoO3-modified S-FDSSC improves by 60% compared with that of the reference S-FDSSC. In addition, because of the robust fractional structure of MoO3, the MoO3-modified S-FDSSC maintains 90% and 95% of efficiency after 350-fold bending and the incident light angle dependency test, respectively. At 65% humidity and at 65 °C, the power conversion efficiency of the MoO3-modified device decreases by <20% after 350 h of storage, while that of the reference device drops by more than 70%.

Keywords: Catalyst; Counter electrode; Dye-sensitized solar cell; Fiber electronics; Molybdenum oxide.