Effects of ultraviolet radiation to Solea senegalensis during early development

Sci Total Environ. 2021 Apr 10:764:142899. doi: 10.1016/j.scitotenv.2020.142899. Epub 2020 Oct 14.

Abstract

Ultraviolet radiation (UVR) reaching the Earth surface is increasing and scarce information is available regarding effects of this stressor to early life stages of marine vertebrates. Therefore, this work aims to study the effects of UVR exposure during early development stages of the flatfish Solea senegalensis. Firstly, fish were exposed to UVR (six daily doses between 3.4 ± 0.08 and 8.6 ± 0.14 kJ m-2) at the following moments: gastrula stage (24 h post fertilization, hpf), 1 and 2 days after hatching (dah, 48 and 72 hpf, respectively). In a second bioassay, fish at the beginning of metamorphosis were exposed to UVR (one or two daily doses of 7.2 ± 0.39 or 11.1 ± 0.49 kJ m-2) and then maintained until the end of metamorphosis. Mortality and effects on development, growth and behaviour were evaluated at the end of both bioassays (3 dah and 18 dah, respectively). Biomarkers of neurotransmission (acetylcholinesterase, AChE), oxidative stress (catalase, CAT) and biotransformation (glutathione S-transferase, GST) were also determined at the end of the early larvae bioassay, and metamorphosis progression was evaluated during the second bioassay. UVR exposure caused distinct effects depending on life stage. Altered pigmentation, decreased growth, impaired fish behaviour and AChE and GST inhibition were observed at the earlier larval phase. Whereas, decrease in growth was the main effect observed at the metamorphosis stage. In summary, the exposure of S. senegalensis early stages to environmentally relevant UVR doses led to adverse responses at different levels of biological organization, which might lead to implications in later life stages.

Keywords: Behaviour; Biochemical markers; Climate change; Flatfish; Growth; Metamorphosis.

MeSH terms

  • Animals
  • Flatfishes*
  • Larva
  • Metamorphosis, Biological
  • Oxidative Stress
  • Ultraviolet Rays*