Magnesium Oxychloride Cement Composites Lightened with Granulated Scrap Tires and Expanded Glass

Materials (Basel). 2020 Oct 28;13(21):4828. doi: 10.3390/ma13214828.

Abstract

In this paper, light burned magnesia dispersed in the magnesium chloride solution was used for the manufacturing of magnesium oxychloride cement-based composites which were lightened by granulated scrap tires and expanded glass. In a reference composite, silica sand was used only as filler. In the lightened materials, granulated shredded tires were used as 100%, 90%, 80%, and 70% silica sand volumetric replacement. The rest was compensated by the addition of expanded glass granules. The filling materials were characterized by particle size distribution, specific density, dry powder density, and thermal properties that were analyzed for both loose and compacted aggregates. For the hardened air-cured samples, macrostructural parameters, mechanical properties, and hygric and thermal parameters were investigated. Specific attention was paid to the penetration of water and water-damage, which were considered as crucial durability parameters. Therefore, the compressive strength of samples retained after immersion for 24 h in water was tested and the water resistance coefficient was assessed. The use of processed waste rubber and expanded glass granulate enabled the development of lightweight materials with sufficient mechanical strength and stiffness, low permeability for water, enhanced thermal insulation properties, and durability in contact with water. These properties make the produced composites an interesting alternative to Portland cement-based materials. Moreover, the use of low-carbon binder and waste tires can be considered as an eco-efficient added value of these products which could improve the environmental impact of the construction industry.

Keywords: granulated expanded glass; macrostructural parameters; magnesium oxychloride cement; mechanical resistance; scrap tires; thermal performance; water resistance.