Role of m6A RNA methylation in cardiovascular disease (Review)

Int J Mol Med. 2020 Dec;46(6):1958-1972. doi: 10.3892/ijmm.2020.4746. Epub 2020 Oct 6.

Abstract

N6‑methyladenosine (m6A) is the most prevalent and abundant type of internal post‑transcriptional RNA modification in eukaryotic cells. Multiple types of RNA, including mRNAs, rRNAs, tRNAs, long non‑coding RNAs and microRNAs, are involved in m6A methylation. The biological function of m6A modification is dynamically and reversibly mediated by methyltransferases (writers), demethylases (erasers) and m6A binding proteins (readers). The methyltransferase complex is responsible for the catalyzation of m6A modification and is typically made up of methyltransferase‑like (METTL)3, METTL14 and Wilms tumor 1‑associated protein. Erasers remove methylation by fat mass and obesity‑associated protein and ALKB homolog 5. Readers play a role through the recognition of m6A‑modified targeted RNA. The YT521‑B homology domain family, heterogeneous nuclear ribonucleoprotein and insulin‑like growth factor 2 mRNA‑binding protein serve as m6A readers. The m6A methylation on transcripts plays a pivotal role in the regulation of downstream molecular events and biological functions, such as RNA splicing, transport, stability and translatability at the post‑transcriptional level. The dysregulation of m6A modification is associated with cancer, drug resistance, virus replication and the pluripotency of embryonic stem cells. Recently, a number of studies have identified aberrant m6A methylation in cardiovascular diseases (CVDs), including cardiac hypertrophy, heart failure, arterial aneurysm, vascular calcification and pulmonary hypertension. The aim of the present review article was to summarize the recent research progress on the role of m6A modification in CVD and give a brief perspective on its prospective applications in CVD.

Publication types

  • Review

MeSH terms

  • Adenosine / analogs & derivatives*
  • Adenosine / metabolism
  • Animals
  • Cardiovascular Diseases / genetics*
  • Humans
  • Methylation
  • Polymorphism, Single Nucleotide / genetics
  • RNA / metabolism*
  • RNA-Binding Proteins / metabolism

Substances

  • RNA-Binding Proteins
  • RNA
  • N-methyladenosine
  • Adenosine