Metal-organic magnets with large coercivity and ordering temperatures up to 242°C

Science. 2020 Oct 30;370(6516):587-592. doi: 10.1126/science.abb3861.

Abstract

Magnets derived from inorganic materials (e.g., oxides, rare-earth-based, and intermetallic compounds) are key components of modern technological applications. Despite considerable success in a broad range of applications, these inorganic magnets suffer several drawbacks, including energetically expensive fabrication, limited availability of certain constituent elements, high density, and poor scope for chemical tunability. A promising design strategy for next-generation magnets relies on the versatile coordination chemistry of abundant metal ions and inexpensive organic ligands. Following this approach, we report the general, simple, and efficient synthesis of lightweight, molecule-based magnets by postsynthetic reduction of preassembled coordination networks that incorporate chromium metal ions and pyrazine building blocks. The resulting metal-organic ferrimagnets feature critical temperatures up to 242°C and a 7500-oersted room-temperature coercivity.

Publication types

  • Research Support, Non-U.S. Gov't