Serum microRNA-365 suppresses non-small-cell lung cancer metastasis and invasion in patients with bone metastasis of lung cancer

J Int Med Res. 2020 Oct;48(10):300060520939718. doi: 10.1177/0300060520939718.

Abstract

Objective: In the present investigation, we evaluated the effects of microRNA-365 (miR-365) on non-small-cell lung cancer (NSCLC) cell metastasis and invasion in patients with bone metastasis of lung cancer.

Methods: Blood samples from patients with NSCLC and healthy controls and the A549 adenocarcinoma cell line were included in this study. Quantitative real-time PCR and microarray were performed on blood samples. The MTT assay, luciferase reporter assay, Transwell assay, ELISA, and western blot were performed to evaluate expression of associated factors.

Results: Expression of miR-365 was reduced in patients with bone metastasis of NSCLC. Downregulation of miR-365 promoted cell growth, metastasis, and invasion of NSCLC. Upregulation of miR-365 reduced cell growth, metastasis, and invasion of NSCLC. Downregulation of miR-365 induced expression of NKX homeobox-1 (NKX2-1), epidermal growth factor receptor (EGFR), phosphoinositide-3-kinase (PI3K), and p-Akt proteins in an in vitro model of NSCLC. Inhibition of NKX2-1 reduced the effects of miR-365 on cell growth, metastasis, and invasion of NSCLC. Activation of EGFR reduced the effects of miR-365 on cell growth, metastasis, and invasion of NSCLC.

Conclusions: The study established that the serum miR-365 suppresses NSCLC cell metastasis and invasion in patients with bone metastasis of lung cancer via EGFR/PI3K through NKX2-1.

Keywords: NKX homeobox-1; bone metastasis; epidermal growth factor receptor; microRNA-365; non-small-cell lung cancer; phosphoinositide-3-kinase.

MeSH terms

  • A549 Cells
  • Bone Neoplasms / secondary*
  • Carcinoma, Non-Small-Cell Lung* / genetics
  • Carcinoma, Non-Small-Cell Lung* / pathology
  • Cell Line, Tumor
  • Cell Movement
  • Cell Proliferation
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Lung Neoplasms* / genetics
  • Lung Neoplasms* / pathology
  • MicroRNAs* / genetics

Substances

  • MIRN365 microRNA, human
  • MicroRNAs